Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 211: 545-555, 2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35577193

RESUMO

Enhanced co-production of medium-chain-length polyhydroxyalkanoates (mcl-PHA) and extracellular phenazines was assessed through a high cell density cultivation of Pseudomonas chlororaphis subsp. aurantiaca (DSM 19603) in a membrane bioreactor using crude glycerol as a fermentative substrate. A maximum dry cell weight (DCW) of 59.25 ± 0.31 g/L was achieved at 90 h of cultivation with a maximum mcl-PHA and extracellular phenazines concentrations of respectively 19.05 ± 0.04 g/L (32.16% of DCW) and 79.42 ± 0.35 mg/L. mcl-PHA concentration achieved through cell retention culture was 28.43-folds higher than that obtained by batch culture. Fourier transform infrared spectroscopy, gas chromatography-mass spectrometry, and 1H nuclear magnetic resonance analysis identified the produced PHA as a mcl-PHA copolymer of 3-hydroxyhexanoate (0.68%), 3-hydroxyoctanoate (7.76%), 3-hydroxydecanoate (49.18%), 3-hydroxydodecanoate (4.89%), and 3-hydroxytetradecanoate (37.50%). The mcl-PHA exhibited a highly amorphous structure with low crystallinity index (4.19%) and high thermal stability. This is the first report on the enhanced co-production of mcl-PHA and phenazines in a membrane bioreactor.


Assuntos
Poli-Hidroxialcanoatos , Pseudomonas chlororaphis , Reatores Biológicos , Contagem de Células , Glicerol/química , Fenazinas , Pseudomonas
2.
Int J Biol Macromol ; 192: 289-297, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34619282

RESUMO

A cell retention culture of Paracoccus sp. LL1 was performed in a membrane bioreactor equipped with an internal ceramic filter module to reach high cell density and thus enhance the co-production of polyhydroxyalkanoates (PHA) and astaxanthin as growth-associated products. Cell retention culture results showed that PHA accumulation increased with increasing dry cell weight (DCW), giving rise to a maximum of 113 ± 0.92 g/L of DCW with 43.9 ± 0.91 g/L of PHA (38.8% of DCW) at 48 h. A significant increase in both intracellular and extracellular astaxanthin concentrations was also recorded during fermentation process achieving a maximum of 8.51 ± 0.20 and 10.2 ± 0.24 mg/L, respectively. Amounts of PHA and total astaxanthin produced by cell retention culture were 6.29 and 19.7-folds higher, respectively, than those recorded under batch cultivation. PHA and total astaxanthin productivities by cell retention culture also increased up to 0.914 g/L/h and 0.781 mg/L/h, respectively, which were 3.54 and 11.1-folds higher than those of batch culture. Based on gas chromatography, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance spectroscopy, the extracted PHA was identified as a copolymer of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) with a 3-hydroxyvalerate content of 3.78 mol%.


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Reatores Biológicos , Fermentação , Paracoccus/metabolismo , Poli-Hidroxialcanoatos/biossíntese , Ressonância Magnética Nuclear Biomolecular , Poli-Hidroxialcanoatos/análise , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria , Xantofilas/análise , Xantofilas/metabolismo
3.
Polymers (Basel) ; 13(9)2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33923329

RESUMO

Biodegradable polyurethanes (PUs) were produced from castor oil (CO) and poly (3-hydroxybutyrate) diol (PHBD) using hexamethylene diisocyanate as a crosslinking agent. PHBDs of different molecular weights were synthesized through transesterification of bacterial PHB and ethylene glycol by changing the reaction time. The synthesized PHBDs were characterized in terms of Fourier transform infrared and proton nuclear magnetic resonance spectroscopy. A series of PUs at different NCO/OH and CO/PHBD ratios were prepared. The resulting CO/PHBD-based PUs were then characterized in terms of mechanical and thermal properties. Increasing PHBD content significantly increased the tensile strength of CO/PHBD-based PUs by 300% compared to neat CO-based PU. CO/PHBD-based PUs synthetized from short chain PHBD exhibited higher tensile strength compared to those produced from long chain PHBD. As revealed by scanning electron microscopy analysis, such improvement in stiffness of the resulting PUs is due to the good compatibility between CO and PHBD. Increasing PHBD content also increased the crystallinity of the resulting PUs. In addition, higher degradation rates were obtained for CO/PHBD-based PUs synthetized from long chain PHBD compared to neat CO PU and PUs produced from short chain PHBD.

4.
Food Chem ; 337: 127777, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32799163

RESUMO

Biodegradable films based on chitosan, glycerol, and defatted Chlorella biomass (DCB) were prepared and characterized in terms of thermal stability, mechanical, water barrier, and optical properties. Increasing DCB content from 5 to 25 wt% increased tensile strength of chitosan films by 235%. The incorporation of DCB decreased both moisture content and swelling degree of chitosan/defatted Chlorella biomass (Cs/DCB) films. Furthermore, increasing the content of defatted algal biomass decreased light transmission and reduced water vapor permeability of composite films by more than 60%. As confirmed by scanning electron microscopy and Fourier transform infrared analysis, such improvement in functional and physical properties is mainly due to the homogeneous and uniform distribution of DCB into the polymeric matrix along with the establishment of strong hydrogen bond interactions between chitosan and algal biomass constituents. Moreover, Cs/DCB composite films showed more than 50% of degradation in 60 days soil burial test.


Assuntos
Quitosana/química , Chlorella/química , Biomassa , Chlorella/metabolismo , Glicerol/química , Ligação de Hidrogênio , Permeabilidade , Polímeros/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
5.
J Microbiol Biotechnol ; 29(6): 905-912, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31154746

RESUMO

Bioethanol has attracted much attention in recent decades as a sustainable and environmentally friendly alternative energy source. In this study, we compared the production of bioethanol by Candida molischiana and Saccharomyces cerevisiae at different initial concentrations of cellobiose and glucose. The results showed that C. molischiana can utilize both glucose and cellobiose, whereas S. cerevisiae can only utilize glucose. The ethanol yields were 43-51% from different initial concentrations of carbon source. In addition, different concentrations of microcrystalline cellulose (Avicel) were directly converted to ethanol by a combination of Trichoderma reesei and two yeasts. Cellulose was first hydrolyzed by a fully enzymatic saccharification process using T. reesei cellulases, and the reducing sugars and glucose produced during the process were further used as carbon source for bioethanol production by C. molischiana or S. cerevisiae. Sequential culture of T. reesei and two yeasts revealed that C. molischiana was more efficient for bioconversion of sugars to ethanol than S. cerevisiae. When 20 g/l Avicel was used as a carbon source, the maximum reducing sugar, glucose, and ethanol yields were 42%, 26%, and 20%, respectively. The maximum concentrations of reducing sugar, glucose, and ethanol were 10.9, 8.57, and 5.95 g/l, respectively, at 120 h by the combination of T. reesei and C. molischiana from 50 g/l Avicel.


Assuntos
Biocombustíveis , Candida/metabolismo , Celobiose/metabolismo , Celulose/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Saccharomyces cerevisiae/metabolismo , Candida/crescimento & desenvolvimento , Celobiose/química , Celulase/metabolismo , Celulose/química , Proteínas Fúngicas/metabolismo , Glucose/química , Hidrólise , Saccharomyces cerevisiae/crescimento & desenvolvimento , Açúcares/metabolismo , Trichoderma/crescimento & desenvolvimento , Trichoderma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...